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Abstract

Automatic generation of state invariants, properties

that hold in every reachable state of a state machine

model, can be valuable in software development. Not

only can such invariants be presented to system users

for validation, in addition, they can be used as auxil-

iary assertions in proving other invariants. This paper

describes an algorithm for the automatic generation of

state invariants that, in contrast to most other such al-

gorithms, which operate on programs, derives invariants

from requirements speci�cations. Generating invariants

from requirements speci�cations rather than programs

has two advantages: 1) because requirements speci�ca-

tions, unlike programs, are at a high level of abstraction,

generation of and analysis using such invariants is eas-

ier, and 2) using invariants to detect errors during the

requirements phase is considerably more cost-e�ective

than using invariants later in software development. To

illustrate the algorithm, we use it to generate state in-

variants from requirements speci�cations of an automo-

bile cruise control system and a simple control system

for a nuclear plant. The invariants are derived from

speci�cations expressed in the SCR (Software Cost Re-

duction) tabular notation.

Keywords|requirements, speci�cation, formal meth-

ods, invariants, veri�cation, validation, software tools

1 Introduction

Given the high frequency of defects in software require-

ments speci�cations, the high cost of correcting them

late in software development, and the serious accidents

� This work was supported by the O�ce of Naval Research.

such defects may cause, techniques for the early detec-

tion and removal of defects from software requirements

speci�cations are crucial. One formal method that is

designed to detect and correct errors during the require-

ments phase of software development is the SCR (Soft-

ware Cost Reduction) method. Originally formulated

to document the requirements of the Operational Flight

Program (OFP) for the U.S. Navy's A-7 aircraft [19],

the SCR method has been used by many organizations

in industry (e.g., Bell Laboratories, Grumman, Ontario

Hydro, and Lockheed) to specify the requirements of

practical systems. The largest application of SCR to

date occurred in 1993-94 when engineers at Lockheed

used a version of SCR to document the complete re-

quirements of Lockheed's C-130J OFP [12], a program

containing more than 230K lines of Ada code.

Introduced in 1995, the SCR toolset [16, 17, 18] is

an integrated suite of tools supporting the SCR re-

quirements method. Each tool in the suite detects a

special class of errors. For example, the speci�cation

editor helps the user detect ambiguous requirements;

the consistency checker automatically detects violations

of application-independent properties, such as type er-

rors and missing cases; the simulator helps the user de-

tect cases in which the speci�cation fails to satisfy the

speci�er's intent, and a newly integrated model checker

SPIN [21] detects violations of application-speci�c prop-

erties, such as safety properties [6]. Recently, NRL ap-

plied the SCR tools to a sizable contractor-produced re-

quirements speci�cation of the Weapons Control Panel

(WCP) for a safety-critical U.S. military system [15].

The tools uncovered numerous errors in the contractor

speci�cation, including a safety violation. This viola-

tion, which could lead to a serious malfunction of the

weapons system, was detected by model checking.

To specify the required system behavior, users of the

SCR method may adopt a dual language approach [29].

In this approach, two di�erent speci�cations are de-

veloped, one operational and the other property-based.

The operational (or model-based) speci�cation describes

how the system operates, while the property-based spec-



i�cation describes the required system properties. An

operational speci�cation may represent the system as a

state machine, whereas a property-based speci�cation

usually expresses properties as logic formulas. In the

SCR requirements method, the operational speci�ca-

tion is expressed in tables and the system properties

as �rst-order logic formulas. Examples of the dual lan-

guage approach in SCR speci�cations include the A-7

requirements document [19, 20], which, in addition to

the tabular operational speci�cation, contains proper-

ties of the system modes, and Kirby's cruise control

speci�cation [23], which contains both a tabular speci-

�cation of the required system operations and a list of

required system properties.

The dual language approach is useful because each

speci�cation style has advantages: operational speci-

�cations are less likely to omit required behavior and

are often executable, whereas property-based speci�-

cations are concise, abstract, and minimize implemen-

tation bias. Another advantage of the dual language

approach is that detecting inconsistencies between two

di�erent speci�cations of the same behavior is an ef-

fective technique for debugging both the statements of

the required properties and the operational speci�ca-

tion. For example, when Dill and his colleagues used

model checking to analyze a hardware design for sev-

eral properties of interest, they detected errors both in

the design and in the stated properties [11].

One formal technique useful in conjunction with the

dual-language approach is automatic invariant genera-

tion. This technique automatically generates state in-

variants, properties that hold in every reachable state of

a state machine model, from the operational speci�ca-

tion. Such state invariants can be presented to system

users for validation or, alternately, can be used as aux-

iliary invariants in proving additional properties from

the requirements speci�cation, such as the properties

included in the property-based speci�cation.

This paper introduces an e�cient, automatable al-

gorithm for generating state invariants. In contrast

to most other such algorithms, which operate on pro-

grams, our algorithm derives invariants from require-

ments speci�cations. Generating invariants from re-

quirements speci�cations has two major advantages: 1)

requirements speci�cations, unlike programs, are at a

high level of abstraction, and hence generation of and

analysis using such invariants is easier, and 2) using in-

variants to detect errors during the requirements phase

is considerably more cost-e�ective than using invariants

later in software development.

Our algorithm, which extends the methods described

in [3, 4], generates invariants from speci�cations ex-

pressed in the SCR tabular notation. The invariants

are computed by combining information from a table

taken from an SCR speci�cation and various other facts,

such as environmental assumptions. To illustrate the al-

gorithm, we show how special invariants called \mode

invariants" can be derived from a mode transition ta-

ble, a type of table appearing in SCR speci�cations.

Next, we obtain invariants from two other types of ta-

bles, both extracted from the same SCR speci�cation.

To demonstrate the utility of our approach, we use these

invariants as auxiliary invariants in proving two prop-

erties of the speci�cation. These properties were previ-

ously proved using model checking. Finally, we present

a more formal description of a generalized version of

our algorithm. This generalized version may be used to

extract invariants from other state-based speci�cations,

such as speci�cations in TLA (Temporal Logic of Ac-

tions) [24] and speci�cations for STeP (Stanford Tem-

poral Prover) [27]. The Appendix presents the proof

of the generalized version of the algorithm. We have

formally proved the correctness of the generalized algo-

rithm using the PVS prover [10, 30].

2 SCR Requirements Model

An SCR requirements speci�cation describes a nonde-

terministic environment and the required system behav-

ior (usually deterministic) [17]. Monitored (also called

input) variables and controlled (also called output) vari-

ables, which represent the respective quantities the sys-

tem monitors and controls, model the system environ-

ment. The environment nondeterministically generates

a sequence of input events, where each input event is a

single change in some monitored variable. Each input

event may cause the system to change one or more of

the controlled variables.

In SCR, NAT and REQ, two relations of the Four

Variable Model [32], describe the required system be-

havior. NAT describes physical constraints on the en-

vironment; REQ describes the relation between moni-

tored and controlled variables that the system must en-

force. To specify REQ concisely, SCR speci�cations use

two types of auxiliary variables: mode classes, whose

values are modes, and terms. Both mode classes and

terms may be used to capture historical information.

More formally, an SCR system � is represented as

a state machine � = (S;S0; E
m; T ), where S is the set

of states, S0 � S is the initial state set, Em is the set

of input events, and the transform T maps each input

event and old state to a new state [17]. A simplifying

assumption, called the One Input Assumption, states

that one input event occurs at each state transition.

The transform T is the composition of smaller func-

tions, called table functions, derived from the tables in

an SCR requirements speci�cation. (Alternatively, the

transform can be expressed in relational form|see Sec-

tion 6.) Each table de�nes a term, a mode class, or a

controlled variable.



The SCR requirements model includes a set RF =

fr1; r2; : : : ; rng containing the names of all state vari-

ables in a given speci�cation and a function TY which

maps each variable to its type, i.e., its set of legal val-

ues. In the model, a state s is a function that maps

each variable r to some value in TY (r). A condition

is a predicate de�ned on the system state, whereas an

event is a predicate de�ned on two successive system

states that denotes some change between those states.

The notation \@T(c) WHEN d" denotes a conditioned

event, de�ned as

@T(c) WHEN d
def
= :c ^ c0 ^ d;

where the unprimed conditions c and d are evaluated in

the old state, and the primed condition c0 is evaluated

in the new state. Informally, \@T(c) WHEN d" means

that c was false in the old state and has changed to true

in the new state, while d was true in the old state but

is unrestricted in the new state. The notation \@F(c)"

is de�ned by @F(c) = @T(:c). In reasoning about

conditions c and d, we say that c strengthens d (also

expressed as c < d) if c ) d is a tautology, but c 6= d.

In this paper, both :c and c denote the negation of

condition c.

3 Mode Classes and Mode Invariants

The three kinds of tables found in most SCR speci�ca-

tions are mode transition tables, condition tables, and

event tables. While the focus in this paper is on gener-

ating invariants from mode transition tables, Section 5

describes how invariants can be obtained from condition

tables and event tables.

In isolation, a mode class, its inputs, and the as-

sociated transitions|which we call a mode machine|

may be viewed as a very simple system � with

a single output, a mode class. A mode transi-

tion table represents the transitions of a mode ma-

chine in a tabular format. The inputs of the mode

machine are the variables appearing in the predi-

cates that de�ne the transitions. Table 1 contains a

mode transition table, part of an SCR speci�cation

for the Automobile Cruise Control System [18]. In

this system, the set of state variables RF is de�ned

by RF = fIgnOn, Lever, EngRunning, Brake, Mg,

where IgnOn, Lever, EngRunning, and Brake are

monitored variables and M is a mode class with

values in the set fOff; Inactive; Cruise; Overrideg.

The variables IgnOn, EngRunning, and Brake are

boolean; the variable Lever has the enumerated type

foff, const, resume, releaseg. In the initial states

of Cruise Control, both IgnOn and EngRunning are false

and M = Off.

Table 1 de�nes the transform T for this simple sys-

tem. T maps the old state and an event, a change in

the value of one of the monitored variables, to a new

state. For example, the fourth row of Table 1 states

that if the system is currently in a state where the mode

is Cruise and the event @F(IgnOn) occurs, then, in

the new state, the mode is Off. If, in a given state,

none of the events de�ning transitions from the current

mode occur (yet some input event has occurred), then

there is no change in mode. For example, if the sys-

tem is in Cruise mode in the old state and some input

event occurs, but none of @F(IgnOn), @F(EngRunning),

@T(Brake), or @T(Lever = off) occurs, then the sys-

tem remains in Cruise mode in the new state.

A mode invariant for mode m, M = m ) P (m),

is a special case of a state invariant, where P (m) is a

proposition over the state variables. For example, four

mode invariants of the Cruise Control System that can

be derived from Table 1 and other information about

the Cruise Control System, such as environmental con-

straints and assumptions about the initial states, are

� M = Off) :IgnOn

� M = Cruise) IgnOn ^ EngRunning ^ :Brake ^

Lever 6= off

� M = Override) IgnOn ^ EngRunning

� M = Inactive) IgnOn

4 Mode Invariant Generation

Our technique automatically generates mode invariants

from propositional formulas derived from a mode ma-

chine and constraints on the input variables associated

with that mode machine. To compute the mode invari-

ants for a mode class M , we �rst identify the set of

atomic conditions appearing in the events of the mode

transition table forM . For example, in the Cruise Con-

trol speci�cation, we have I � IgnOn, E � EngRunning,

B � Brake, O � Lever=off, C � Lever=const, R �

Lever=resume, and L � Lever=release.1 Below, the

term literal refers to either an atomic condition or its

negation. The algorithm consists of the following three

steps:

1. For each mode m, compute the mode entry condi-

tion N (m), the disjunction of the conditions true

upon entry into mode m from other modes or upon

entry into an initial state when M = m.

2. For each mode m, compute the unconditional exit

set X(m), where X(m) is the set of literals whose

falsi�cation cause unconditional exit from m.

3. For each mode m, compute the mode invariant

P (m) by eliminating from each disjunct in N (m)

1All four values of Levermust be considered, even though the table

mentions only three of them.



Old Mode Event New Mode

1 Off @T(IgnOn) Inactive

2 Inactive @F(IgnOn) Off

3 Inactive @T(Lever = const) WHEN IgnOn AND Cruise

EngRunning AND NOT Brake

4 Cruise @F(IgnOn) Off

5 Cruise @F(EngRunning) Inactive

6 Cruise @T(Brake) OR @T(Lever = off) Override

7 Override @F(IgnOn) Off

8 Override @F(EngRunning) Inactive

9 Override @T(Lever = resume) WHEN IgnOn AND Cruise

EngRunning AND NOT Brake OR
@T(Lever = const) WHEN IgnOn AND
EngRunning AND NOT Brake

Initially: M = Off^ :IgnOn^ :EngRunning

Table 1: Mode Transition Table for Cruise Control.

all literals that are not members of X(m). More

precisely, replace each literal that is not in X(m)

by true.

In the examples below, only an intuitive special case

of step 3 is needed: that is, M = m ) c is a mode

invariant if c is true in each disjunct of N (m) and c is

a conjunction of literals in X(m).

The algorithm repeats these three steps until a �x-

point is reached. Let Ni(m), Xi(m), and Pi(m) repre-

sent the values of the mode entry condition, the uncon-

ditional exit set, and the invariant for mode m at the

end of the ith pass of the algorithm. During each pass

of the algorithm, the information in the table as well as

a number of additional facts may be used to strengthen

the invariant computed at that pass. The additional

facts include the initial state predicate (a predicate de-

scribing the states s 2 S0), environmental constraints,

such as the One Input Assumption and constraints on

enumerated type variables, and invariants computed on

previous passes. A constraint on an enumerated type

(needed due to our boolean encoding) simply states that

if an enumerated type variable has one value, it cannot

have other values. For example, in the Cruise Control

System, if Lever has the value const, it cannot have

any other value; more precisely, C , O^R^L.

Table 2 summarizes the results of applying the al-

gorithm to the mode transition table shown in Table 1.

Applying the algorithm generates the four invariants

listed at the end of the previous section. For each pass i,

Table 2 shows the mode entry condition Ni(m), the

unconditional exit set Xi(m), and the invariant Pi(m)

computed during that pass for each of the four modes m

in the mode classM . For each mode m and each pass i,

the table identi�es the additional facts that were used

to strengthen the invariant. Table 2 shows that, for this

example, four passes are needed to reach a �xpoint.

Below, we describe how the information in Table 2

and the additional facts described above are used to

compute the four mode invariants. Although each step

of the algorithm is actually applied to all modes at

once, below we simplify our description of the algo-

rithm by treating one mode at a time. Generating

the invariant for the mode Off uses information from

Table 1 as well as the initial state predicate. Gener-

ating the invariant for the mode Cruise shows how

the One Input Assumption and the constraints on an

enumerated type variable are used to strengthen the

mode entry condition computed from Table 1, which in

turn strengthens the computed invariant. In generat-

ing the invariant for the mode Override, an invariant

generated on the �rst pass for a di�erent mode is used

to strengthen the mode entry condition computed in

the second pass. Then, the strengthened mode entry

condition is used to strengthen the computed invari-

ant. Computing the strongest invariant for the mode

Inactive requires three passes of the algorithm. In the

second and third passes, invariants generated for other

modes during the �rst and second passes are used to

strengthen the mode entry condition and subsequently

the mode invariant for Inactive.

To apply the algorithm to the mode Off, we �rst

analyze rows 2, 4, and 7, the three rows of Table 1 that

cause the system to enter the Off mode. In each case,

the condition that holds upon entry into Off is :IgnOn,

denoted as I . Next, because M = Off holds in the

initial state, we can also include part of the initial state

predicate (namely, :IgnOn ^ :EngRunning, denoted

as I^E) in the mode entry condition. Thus, the mode

entry condition is N1(Off) = I _ I _ I _ I^E = I .

In the second step, we analyze row 1, the only row of

Table 1 that describes an exit from Off, to compute

the unconditional exit set X1(Off). The only condition

whose falsi�cation causes unconditional exit from Off

is :IgnOn. Hence, X1(Off) = fIg. In the third step,

we restrict the mode entry condition to the members of

the unconditional exit set to obtain P1(Off) = I, and

hence the mode invariant M = Off) :IgnOn.



i Mode m Ni(m) Xi(m) Pi(m) Comments

1 Off I _ I _ I _ I^E fIg I ISP gives 4th DJ

Inactive I _ E _ E fIg true |

Override B _ O fI; Eg true |

Cruise C Î^E^B^O^R^L _ R Î^E^B^O^C^L fI; E;B;Og I^E^B^O Apply OIA, CET

2 Off I _ I _ I _ I^E fIg I Fixpoint reached?

Inactive I _ E^I^O^B _ E fIg true Apply P1(Cruise), OIA to 2nd DJ

Override B^I^E^O _ O^I^E^B^C^R^L fI; Eg I^E Apply P1(Cruise), OIA, & CET

Cruise C Î^E^B^O^R^L _ R Î^E^B^O^C^L fI; E;B;Og I^E^B^O Fixpoint reached?

3 Off I _ I _ I _ I^E fIg I Fixpoint already reached?

Inactive I _ E Î^O^B _ E^I fIg I Apply P2(Override), OIA to 3rd DJ

Override B^I^E^O _ O^I^E^B^C^R^L fI; Eg I^E Fixpoint reached?

Cruise C Î^E^B^O^R^L _ R Î^E^B^O^C^L fI; E;B;Og I^E^B^O Fixpoint already reached?

4 Off I _ I _ I _ I^E fIg I Fixpoint reached!

Inactive I _ E Î^O^B _ E^I fIg I Fixpoint reached!

Override B^I^E^O _ O^I^E^B^C^R^L fI; Eg I^E Fixpoint reached!

Cruise C Î^E^B^O^R^L _ R Î^E^B^O^C^L fI; E;B;Og I^E^B^O Fixpoint reached!

Key

ISP: Initial State Predicate I: IgnOn

OIA: One Input Assumption E: EngRunning

CET: Constraint from Enumerated Type B: Brake

Ni(m): Mode Entry Condition for Mode m at ith pass O: Lever =off
Xi(m): Unconditional Exit Set for Mode m at ith pass C: Lever = const

Pi(m): Invariant computed for Mode m at ith pass R: Lever = resume

DJ: Disjunct of Ni(m) L: Lever = release

Table 2: Mode Invariant Generation for Cruise Control

Next, we use our algorithm to generate a mode in-

variant for the mode Cruise. First, we use rows 3 and 9,

the two rows of Table 1 that cause entry into Cruise, to

compute the mode entry condition. The One Input As-

sumption guarantees that the conditions in the WHEN

clauses remain true upon entry into Cruise; hence, for

example, the conditioned event in row 3 and the One

Input Assumption imply that, upon entry into mode

Cruise, the condition C Î^E^B holds. Thus, the mode

entry condition is

N1(Cruise) = C Î^E^B _ [R Î^E^B _ C Î^E^B]:

Further, because Lever is an enumerated type, only one

of the atomic conditions, O, C, R, and L, can be true at

a given time. Hence, constraints, such as C , O^R^L,

can be used to strengthen the mode entry condition

N1(Cruise), i.e.,

N1(Cruise) = C Î^E^B^O^R^L _ R Î^E^B^O^C^L:2

In the second step, we use rows 4-6 of Table 1 to

compute the unconditional exit set X1(Cruise) =

fI; E;B;Og. Finally, eliminating all literals not in the

unconditional exit set from the mode entry condition

2For readability, the form of this condition has been simpli�ed.

When used to strengthen the invariant based on previously computed

invariants, the condition must be expressed in a form that distin-

guishes the source modes.

produces P1(Cruise) = I^E^B^O. This is equivalent

to the mode invariant

M = Cruise ) IgnOn ^ EngRunning

^ :Brake ^ Lever 6= off: (1)

In generating an invariant for the mode Override,

the �rst pass of the algorithm uses row 6 of Table 1 to

produce N1(Override) = B _ O and rows 7, 8, and

9 to produce X1(Override) = fI; Eg. Because no lit-

erals in the unconditional exit set appear in the mode

entry condition, after the �rst pass, P1(Override) is

trivially true. On the second pass, the mode entry con-

dition can be strengthened by recognizing that the only

mode from which Override can be entered is Cruise

(see row 6). Applying the invariant in (1) generated for

the mode Cruise during the �rst pass, the One Input

Assumption and the constraint on the enumerated type

Lever strengthens the mode entry condition, i.e.,

N2(Override) = B Î^E^O _ O Î^E^B^C^R^L:

Finally, restricting the mode entry condition to

the members of X1(Override) = fI; Eg produces

P2(Override) = I^E, i.e., the invariant

M = Override) IgnOn ^ EngRunning: (2)

To generate an invariant for the mode Inactive,

rows 1, 5, and 8 of Table 1 are used to compute



Mode Events

High False @F(Pressure = High)

TooLow, @T(Block = On) @T(Pressure = High) OR

Permitted WHEN Reset = Off @T(Reset = On)

Overridden True False

Table 3: Event Table for Overridden in Standard Format.

Old Value Event New Value

FALSE @T(Block = On) WHEN Reset = Off AND TRUE

Pressure 6= High

TRUE @T(Reset = On) WHEN Pressure 6= High OR FALSE

@T(Pressure = High) OR @F(Pressure = High)

Table 4: Event Table for Overridden Rewritten as a Mode Transition Table.

N1(Inactive) = I _ E _ E and rows 2 and 3 to com-

pute X1(Inactive) = fIg. In step 3, we note that E,

which appears as the second disjunct in N1(Inactive),

does not appear in the unconditional exit set fIg.

Hence, we replace E with true in N1(Inactive), thus

producing the trivial invariant P1(Inactive) = true.

The second pass uses the One Input Assumption and

the invariant (1) computed during the �rst pass for

Cruise to strengthen the mode entry condition, that

is, N2(Inactive) = I _ [E Î^O^B] _ E. (The third

disjunct E, the mode entry condition when the current

mode is Override, cannot be strengthened because the

invariant computed for Override during pass 1 is true.)

Applying step 3 at the second pass produces no change

in the mode invariant. Finally, on the third pass, the

One Input Assumption and the invariant (2), computed

for Override during the second pass, can be used to

rewrite the mode entry condition as N3(Inactive) =

I _ [E Î^O^B] _ [E Î ]. Restricting the mode entry

condition to the single member I of the unconditional

exit set produces P3(Inactive) = I, which is equivalent

to the mode invariant M = Inactive) IgnOn.

An analysis of Table 2 shows that, for each mode m,

the exit set computed at pass 1, X1(m), predicts the

invariant computed at pass 4, P4(m). As the example

in the next section shows, this is generally not the case.

In the example shown in Table 2, reaching a �xpoint

requires four passes. The number of needed passes can

often be reduced by computing the invariants in a dif-

ferent order and applying an invariant as soon as it is

computed rather than waiting until the next pass. To

illustrate this approach in the Cruise Control example,

we use an alternate ordering: Off, Cruise, Override,

and Inactive. During pass 1, the mode invariant com-

puted earlier for Cruise can be used to strengthen the

mode entry condition for Override and the mode in-

variants for Cruise and Override to strengthen the

mode entry condition for Inactive. This leads to

strengthened mode invariants at the �rst pass, rather

than later passes, with the �xpoint reached during the

second pass.

5 Generating Invariants from Other Tables

The previous section described our algorithm for gener-

ating mode invariants frommode transition tables. This

section shows how this algorithm can be used to gener-

ate state invariants from event tables and also presents

an example of a state invariant derived from a condition

table. Because the invariant is easily derived from the

semantics of condition tables, applying our algorithm

is unnecessary. We also show by example how these

generated invariants may be used to prove additional

invariants.

Consider the event table in Table 3, part of a re-

quirements speci�cation for a simple system control-

ling safety injection in a nuclear plant. (This ta-

ble, equivalent to a similar table in [17], avoids the

\Inmode" notation.) Table 3, which describes when

safety injection is overridden, can be viewed as a simple

SCR system � whose monitored variables are Block,

Reset, and Pressure and whose single controlled vari-

able is Overridden. In the initial states of the sys-

tem, Pressure = TooLow ^ Overridden = false ^

SafetyInjection = On.

Before our algorithm can be applied to an event ta-

ble, the table must be represented in the format of a

mode transition table. To accomplish this, we �rst

treat each mode in the �rst column of the event table as

an additional condition in the WHEN clause of condi-

tioned events in the appropriate row. Then, the table is

rewritten to describe the variable transitions|how the

variable de�ned by the table changes from one value to

any other possible value. If a variable has n possible

values, there are n2 � n possible transitions (excluding

self-transitions). In the case of Table 3, the variable

Overridden has only two values, so only two transi-

tions are needed, the transition from TRUE to FALSE3

and vice versa. Rewriting the event table in Table 3 in

the form of a mode transition table produces Table 4.

To generate a state invariant involving Overridden,

3To avoid confusion with the truth values false and true, we denote

the values of Overridden as FALSE and TRUE.



three atomic conditions are de�ned: R � Reset=On,

B � Block=On, and H � Pressure=High. (The

negations of B and R have the obvious meaning; e.g.,

B � Block=Off.) Applying the algorithm when

Overridden has the value FALSE computes the unin-

teresting P1(FALSE) = true.

On the �rst pass of the algorithm when Overridden

is TRUE, we compute N1(TRUE) = B^R^H (assuming the

One Input Assumption) and X1(TRUE) = fH;Hg. This

yields P1(TRUE) = H, i.e., the state invariant

Overridden = TRUE) Pressure 6= High:

On the second pass, the mode entry condition cannot be

strengthened, but the invariant computed on the �rst

pass allows us to revise the unconditional exit set. Since

Overridden = TRUE ) H is an invariant, we deduce

from Table 4 that the event @T(Reset=On) causes un-

conditional exit from TRUE. Hence, on the second pass,

the unconditional exit setX2(TRUE) is fH;H;Rg, which

produces the strengthened invariant P2(TRUE) = H^R,

i.e.,

Overridden = TRUE )

Pressure 6= High ^ Reset = Off: (3)

Mode Conditions

High, Permitted True False

TooLow Overridden NOT Overridden

Safety Injection Off On

Table 5: Condition Table for Safety Injection.

Table 5 is a condition table, taken from the same

speci�cation as Table 3, which speci�es when the sys-

tem turns safety injection on and o�. The semantics of

condition tables presented in [17] requires the conditions

ci in each row of the table to satisfy two properties: the

disjunction of the ci is true, and the pairwise conjunc-

tion of ci and cj, i 6= j, is false. Using this semantics

along with the assumption about initial states, we can

easily derive the following state invariants from Table 5,

SafetyInjection = On ,

Pressure = TooLow ^ :Overridden; (4)

and its equivalent form,

SafetyInjection = Off ,

Pressure 6= TooLow _ Overridden:

In [6], the following two properties of the Safety In-

jection System are proved using model checking:

Property X: Reset = On ^ Pressure 6= High

) :Overridden

Property Y: Reset = On ^ Pressure = TooLow

) SafetyInjection = On

Property X is easily derived from the invariant in (3),

since (3) is stronger. Moreover, Property Y follows di-

rectly from (3) and (4). This result suggests that our in-

variant generation algorithm can, at times, supplement

other techniques, such as model checking, in verifying

properties of state machine models.

6 Generalizing the Algorithm

This section generalizes our algorithm by describing for-

mally how the algorithm can be applied to general state

machine models. The current SCR requirements model

is a special case of this general model. The general

model allows the transform T to be nondeterministic,

that is, a relation rather than a function, and makes

very general assumptions about the environment|the

One Input Assumption and NAT constraints of the cur-

rent SCR model are special cases. Further, the events

de�ning transitions are not limited to the special un-

conditioned event form found in SCR tables.

Our general algorithm for generating state invari-

ants can be applied to other state machine models. For

example, we have applied the algorithm to two SCR

speci�cations analyzed by Atlee and Gannon [4], whose

SCR semantics omits the One Input Assumption, and

corroborated their results.4 The algorithm also applies

to models, such as TLA [24] and STeP [27], whose tran-

sitions are expressed as changes in one or more system

variables. In other models, such as Statecharts [14] and

RSML (Requirements State Machine Language) [25],

which include hierarchical states and internal events,

the algorithm is also applicable but due to the complex

step semantics of these two models, applying the algo-

rithm would be less straightforward. A recent paper by

Park et al. [31] discusses the generation of invariants

from RSML speci�cations (see Section 7).

6.1 Mode Machines as Abstract State Machines

We consider a system as a state machine � = (S;�; �),

where S is the set of states, � is the initial state predi-

cate, and � is the next-state relation on pairs of states.

To de�ne the state machine � corresponding to an SCR

machine represented as (S;S0; E
m; T ), we de�ne (1) the

initial-state predicate � on a state s 2 S such that �(s)

is true i� s 2 S0 and (2) the next-state predicate � on

4In later work, Sreemani and Atlee [33] use a semantics for SCR

equivalent to ours, adopting the One Input Assumption and our

WHEN semantics.



pairs of states s; s0 2 S such that �(s; s0) is true i�

there exists an event e 2 Em, enabled in s, such that

T (e; s) = s0. Thus the predicate � is simply a concise

and abstract way of expressing the transform T without

reference to events.

Consider two state machines, � = (S;�; �) and

�A = (SA;�A; �A). Then, �A is an abstraction of � if

there is a map � : S ! SA, s
�
7! sA, called the abstrac-

tion map, such that (a) for all s in S: �(s) ) �A(sA)

and (b) for all s; s0 in S: �(s; s0)) �A(sA; s
0

A). A mode

machine is an example of an abstract state machine �A.

The original speci�cation, which includes the mode ma-

chine as a component, describes the state machine �.

We guarantee that a mode invariant qA computed for

a mode machine �A has a corresponding mode invariant

Z(qA) in the overall state machine � if the following

theorem is satis�ed:

Theorem 1 Let � = (S;�; �) and �A = (SA;�A; �A)

be two state machines, and let � be an abstraction

map from S to SA. If condition qA is an invari-

ant for �A, then Z(qA) is an invariant for � where

Z(qA) = f s j qA(sA) g.

This theorem is a special case of Theorem 1.1, Part 1,

in [2]. It is also a special case of Corollary 5.7 in [9],

which is generalized in [26].

To obtain the abstraction map �, we can often ap-

ply the three abstraction methods for SCR systems de-

scribed in [6, 15] to the speci�cation of the state ma-

chine � to obtain the speci�cation of the mode machine

�A. Abstraction Method 1 eliminates all variables, ex-

cept those on which the mode class depends. Abstrac-

tion Method 2 removes detailed monitored variables

(i.e., variables with large ranges of values), while Ab-

straction Method 3 replaces detailed variables (perhaps

with in�nitely many values) with more abstract, �nite-

valued variables. Encoding the variables as atomic con-

ditions is then required. Normally, we encode a �nite

type using one atomic condition for each value of the

type.

SupposeM is a mode class, TY (M ) the set of possi-

ble values (i.e., modes) ofM , and EA the set of events in

the mode transition table for M , where each e 2 EA is

represented as a logical formula over the encoded atomic

conditions. Then, the mode machine for the mode class

M is de�ned by four constructs: the relation �A de-

scribing the mode transitions, the initial state predicate

�A, and two constraints C1 and C2 on the monitored

variables. C1 and C2 capture the environmental con-

straints described in the previous examples. The con-

structs �A, �A, C1, and C2 are represented as follows:

� �A is a relation on TY (M ) � EA � TY (M). In

SCR speci�cations, this relation is represented by

the encoded form of the mode transition table

for M . We assume that �A omits self-transitions,

i.e., transitions of the form (m; e;m).

� �A is the condition over �A which describes the

initial states. Additionally, we de�ne the initial

states associated with each m as

�A(m) = �AjM :=m;

where �AjM :=m is �A with all appearances of the

variable M replaced with m. For example, in the

Cruise Control System, �A
def
= M = Off ^ I ^ E;

therefore, �A(Off) = I ^ E, and �A(m) = false

otherwise.

� C1 is a conjunction of encoded constraints on mon-

itored variables in a single state. Among these

constraints are the axioms needed to encode �-

nite types as booleans. For example, in the Cruise

Control System, C1 is the axiom

(C , O^R^L) ^ (O , C^R^L) ^

(R, O^C^L) ^ (L, O^C^R):

Other constraints are derived from NAT; for ex-

ample, in the Cruise Control System, a possible

physical constraint (not used in our case) is that

E ) I (i.e., EngRunning) IgnOn [4]).

� C2 is a conjunction of encoded constraints on mon-

itored variables in two consecutive states. One

possible constraint C2 for the Cruise Control sys-

tem is the One Input Assumption. Other possi-

bilities are physical constraints; one example (not

used here) is the encoded version of the constraint:

when Lever 6= release and Lever changes, the

only possible transition is Lever0 = release.

We have shown that with some restrictions (easily met

in practice) that the state machine �A de�ned by the

above constructs satis�es Theorem 1 [22].

6.2 Details of Mode Invariant Generation

In addition to the four constructs de�ned above, our

algorithm uses three functions|NEW, EX, and KEEP.

To compute the the mode entry condition, Step 1 uses

NEW, which extracts the new state information from a

two-state predicate. To compute the unconditional exit

set, Step 2 uses EX, which describes the events causing

exit from a mode. Finally, to compute the mode invari-

ant, Step 3 uses KEEP, a projection operator. Below,

we describe these three functions and then use them to

de�ne the generalized version of our algorithm.

The function NEW has a single argument q, a predi-

cate on two states expressed in Disjunctive Form. More

precisely, q is the disjunction of non-false terms, each of

which is either true or the conjunction of one or more



literals ` or `0. (Any two-state predicate can be ex-

pressed in Disjunctive Form, since any two-state pred-

icate can be expressed in standard disjunctive normal

form, a special case.) The function NEW computes

the strongest condition known to be true in the new

state. Applying NEW to a two-state predicate simply

replaces each old state literal with true and suppresses

the primes on the remaining new state literals. For ex-

ample, the following shows the application of NEW to

the conjunction of the event in the �rst line of Table 4

and an appropriate part of the One Input Assumption

(shown in brackets):

NEW((@T(B) WHEN R^H) ^

[B0 6= B ) R0 = R ^ H0 = H]) =

NEW(B^B0
^R^H^R

0

^H
0

) = B^R^H:

For the formal de�nition of NEW, see the Appendix.

The function EX is a two-state predicate which de-

scribes the events causing exit from a mode as a dis-

junction. For example, in the Cruise Control System,

lines 2 and 3 of Table 1 show that EX(Inactive) should

be de�ned as

EX(Inactive) = @F(I) _ @T(C) WHEN (I^E^B):

Formally, EX is de�ned by

EX(m) =

0
@ _
e;m0:m0

6=m&�A(m;e;m0)

e

1
A :

The function KEEP has two arguments, a set U

of literals and a condition c (i.e., a one-state predi-

cate) expressed in Disjunctive Form. Then, KEEP(U; c)

is c with all literals ` that are not in U replaced by

true. For example, consider U = X2(Override) and

c = N2(Override) from Table 2:

KEEP (fI; Eg; B Î^E^O _ O Î^E^B^C^R^L) =

I^E _ I^E = I^E

For the formal de�nition of KEEP, see the Appendix.

The mode entry condition Ni(m) for a given mode

m at the ith pass is de�ned in terms of �A(m), the in-

variants computed on the previous pass, the constraints

C1 and C2, and the events e causing entry into m. For-

mally, Ni(m) is de�ned by

Ni(m) = �A(m) ^C1

_

0
@ _
m̂;e:�A(m̂;e;m)

NEW(Pi�1(m̂) ^C2 ^ e)

1
A ^C1:

To demonstrate that this de�nition correctly captures

our intuitive notion of \what is known upon mode en-

try," a more formal computation of the mode entry con-

dition N2(Override) for the Cruise Control follows:

N2(Override) = NEW[(P1(Cruise) ^C2

^(@T(B) _@T(O))]^C1

= NEW[I^E^B^O ^C2 ^ (B^B0 _O^O0)] ^ C1

= NEW[B^B0 Î^E^O Î0^E0
^O

0

_ O^O0 Î^E^B Î 0^E0
^B

0

] ^C1

= [B Î^E^O _O Î^E^B] ^C1

= B Î^E^O _O Î^E^B^C^R^L

The unconditional exit setXi(m) for a given modem

at the ith pass is computed using the events @F(`) that

cause exit from m, the invariant Pi�1(m) computed on

the previous pass, the constraints C2, and the function

EX. Formally, Xi(m) is de�ned by

Xi(m) = f` j @F(`) ^ Pi�1(m)

^Pi�1(m)0 ^C2 ) EX(m)g:

To explain this de�nition, we �rst consider the simpler

@F(`)) EX(m). This states that, for each ` 2 Xi(m),

@F(`) is either impossible (thus making the implica-

tion vacuously true) or its occurrence must cause exit

from mode m. However, we can strengthen this sim-

ple form by applying additional facts about the system

when in mode m, i.e., Pi�1(m)^Pi�1(m)0^C2. The in-

clusion of Pi�1(m)0 is rather subtle since it seems that

we don't know that M = m in the new state. How-

ever, if :Pi�1(m)0 then we know that EX(m) holds so

we don't need to consider that alternative and are left

with Pi�1(m)0.

As an example, consider the computation of the in-

variant for Overridden = TRUE in the Safety Injec-

tion system. What follows is the proof that Reset =

off is in the unconditional exit set computed during

the second pass, i.e., R 2 X2(TRUE):

R 2 X2(TRUE)

, @F(R) ^ P1(TRUE) ^ P1(TRUE)
0 ^C2

?
) EX(TRUE)

, @T(R) ^H ^H
0

^C2

) @T(R) ^H _ @T(H) _ @F(H)

Given the mode entry condition Ni(m) and the un-

conditional exit set Xi(m) at the ith pass, we can now

compute the invariant Pi(m) at the ith pass using the

KEEP operator and the constraints C1. Formally,

Pi(m) = KEEP(Xi(m);Ni(m)) ^C1:

That KEEP computes a mode invariant in this equation

is based upon the following intuition: Consider the sim-

plest case when the mode entry condition (in Disjunc-

tive Form) is a single conjunction of literals. Applying



the KEEP operator produces Pi(m), a conjunction of

literals found in Xi(m). First, we note that Pi(m) must

be true upon entry into mode m (the KEEP construc-

tion ensures that Ni(m) ) Pi(m)). Then, Pi(m) must

be a mode invariant, for if not then there must be some

transition that falsi�es Pi(m) but leaves M = m. This

is impossible because falsi�cation of Pi(m) requires at

least one of the literals in Pi(m) (i.e., some ` 2 Xi(m))

to become false, which means that the system must

exit m. In generalizing from the simplest case, we re-

quire the disjunction of the above technique over all

alternative possibilities.

To complete our description of the algorithm, we de-

�ne the initial case

P0(m) = C1:

That is, the mode invariant is simply C1 initially, and

we iterate computing Pi(m) for eachm until a �xpoint is

reached, i.e., when there exists n such that the Pn+1(m)

for each m computed at step n + 1 equals the Pn(m)

computed at step n. The major result that we have

proved is that the algorithm computes mode invariants

for �A (see the Appendix for the proof):

Theorem 2 M = m ) Pi(m) is a mode invariant for

�A for each m and each pass i. Furthermore, (M =

m) Pi(m)) � (M = m ) Pi�1(m)), with at least one

invariant strengthened on each pass i before the �xpoint

is reached.

As a corollary to the proof of the major result, we have

the following simple test that a literal ` is a mode in-

variant (Theorem 3.1 from [3]):

Corollary 1 M = m) ` is a mode invariant of mode

m of �A if (a) ` is always true when mode m is entered,

and (b) event @F(`) causes an unconditional exit from

mode m.

Further, if Theorem 1 holds, then the generated mode

invariants can be translated into mode invariants for

the original state machine �.

This algorithm sacri�ces completeness, i.e., the abil-

ity to generate the strongest invariants, for ease of com-

putation. While our algorithm makes it easy to com-

pute an invariant, it does not necessarily produce the

strongest invariant, i.e., the invariant that would result

from a complete reachability analysis. An additional

source of incompleteness is that the environmental as-

sumptions may be too weak; e.g., the precise environ-

mental constraints may not be known, so a conserva-

tive approximation is used instead. Incompleteness is

further discussed in [22].

7 Related Work

Our technique for generating invariants from SCR spec-

i�cations extends work by Atlee and Gannon [3, 4], who

used hand-computed mode invariants in their analysis

of SCR speci�cations using the MCB model checker [8].

However, their technique was not automatable and only

addressed a special case of our general algorithm. They

derived mode invariants where the Pi(m) were conjunc-

tions of conditions (rather than general expressions),

handled limited event expressions (rather than general

events), and handled only special cases of the environ-

mental constraints C1 and C2.

Mode invariants are analogous to local invariants,

where a local invariant PC = i ) I(i) is a property

that holds when a program is in location i. In par-

ticular, mode invariants are related to the subclass of

\rea�rmed invariants": local invariants de�ned on data

variables [27]. The Stanford Temporal Prover [27] au-

tomatically generates such invariants.

Bensalem and his colleagues have recently re�ned

techniques for generating local invariants [5]. However,

their generation process is considerably di�erent from

ours. They �rst generate invariants that hold for each

process in isolation. This consists of \generalized reaf-

�rmed invariants without cycles" which are analogous

to our computation of mode entry conditions. Next,

these invariants are propagated within each isolated

process. Finally, the invariants from the isolated pro-

cesses are combined into overall system invariants. In

contrast, we concentrate on a single process (a mode

machine) with e�ects of other processes expressed by

the constraints C1 and C2. After computing the mode

entry conditions, we obtain overall system invariants

via the KEEP operator. Our iterations propagate these

invariants throughout the system. They also consider

additional techniques, such as rea�rmed invariants with

cycles, outside the scope of our generation process.

In recent years, there has been a resurgence of

interest in the automatic generation of invariants in

conjunction with advances in automated proof tech-

niques [5, 7, 13, 27, 34]. These methods may be clas-

si�ed as \bottom-up" or \top-down" [7]. Bottom-up

methods, which generate local program invariants and

our mode invariants, derive the invariants automatically

from the state machine speci�cation. Top-down meth-

ods start with a candidate invariant and use this to de-

termine an invariant that is no weaker (if the candidate

is indeed invariant). The method used by Park et al. [31]

to generate invariants to aid in consistency checking of

RSML [25] speci�cations is top-down. While our tech-

nique generates only simple invariants, the generation

of general safety properties (properties using temporal

operators that refer to the evolution of the system over

more than one state) has also been investigated [7].



8 Conclusions and Future Work

This paper describes how state invariants can be auto-

matically derived from SCR speci�cations without gen-

erating a representation of the complete state space of

the system. The algorithm provides successively better

invariants at each pass (not just approximations), so

that valid invariants are obtained even if the algorithm

is not run to completion.

To illustrate the utility of our approach, we used in-

variants derived by our algorithm to prove two safety

properties of the Safety Injection System. This result

suggests that our algorithm can usefully supplement

other techniques, such as model checking, in verifying

properties of state machine models. We envision a de-

velopment environment that o�ers many complemen-

tary techniques|to include model checking, invariant

generation, and theorem proving. For some problems,

using one technique will be more cost-e�ective than us-

ing others; for other problems, two or more techniques

may be useful in concert.

We have explored a version of the algorithm which

does not require the boolean encoding of events. This

algorithm is more complete, and therefore generates

stronger invariants, but is considerably less e�cient.

We are also exploring the extension of our algorithm

to more general invariants than state invariants. More-

over, we are investigating the use of our abstraction

methods [2, 6, 15], which were originally designed to

build the abstract machine �A from a property of in-

terest q, to automatically construct the mode machine

needed to generate state invariants from an SCR spec-

i�cation.

We have developed a prototype tool that uses our al-

gorithm to automatically generate state invariants from

SCR requirements speci�cations and applied it to the

three mode transition tables in an updated version of

the A-7 requirements document [1]. Together the ta-

bles contain a total of 700 rows and 46 modes. In less

than �ve minutes, the tool generated over 20 \inter-

esting" invariants, that is, invariants not equal to true,

that could be presented to system users for validation.

These preliminary results demonstrate the algorithm's

potential e�ciency and practical utility.
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Appendix: Proof of Algorithm Correctness

As background we need the formal semantics of the next

state relation for �A. From �A we �rst de�ne the ex-

plicit next modes for two given states as

�(ŝ; ŝ0) = fm j 9e : �A(ŝ(M ); e;m) ^ e(ŝ; ŝ0)g

We require the next state relation to satisfy the follow-

ing:

�A(ŝ; ŝ
0))

�
ŝ0(M) 2 �(ŝ; ŝ0) if �(ŝ; ŝ0) 6= ;

ŝ0(M) = ŝ(M) otherwise

Thus �A(ŝ; ŝ
0) implies that the mode in the new state

is always taken from among one of the alternatives of

�A for ŝ(M ) having an event occurrence for ŝ and ŝ0,

otherwise there is no change in the mode value.

The semantic de�nitions of KEEP and NEW, equiv-

alent to the respective syntactic forms, are also useful

in the proofs. Let each positive literal be represented

as (r; true) and each negative literal as (r; false). The

semantic de�nition of KEEP is as follows:

KEEP (U; c) = fŝ j 9ŝ1 : c(ŝ1)

^ 8r : (r; ŝ1(r)) 2 U ) ŝ(r) = ŝ1(r)g;

where (r; ŝ1(r)) 2 U means that either (r; true) 2 U ^

ŝ1(r) or (r; false) 2 U ^ :ŝ1(r). Intuitively, each ŝ1
such that c(ŝ1) holds corresponds directly to one of the

disjuncts (minterms) of the standard disjunctive normal

form of c. For each such disjunct, if the literal appears

in that disjunct and is found in U|i.e., (r; ŝ1(r)) 2 U|

then we \keep" it (ŝ(r) = ŝ1(r)); otherwise, we replace

it by true (which is equivalent to ŝ(r) = true _ ŝ(r) =

false in the �nal result). The semantic de�nition of

NEW is similar:

NEW(q) = fŝ0 j 9ŝ : q(ŝ; ŝ0)g

Several lemmas will be useful in the proof that our

algorithm computes mode invariants. First, we prove

some properties of the KEEP and NEW operators:

Lemma 1 (1) e(ŝ; ŝ0) ) NEW(e)(ŝ0), (2) c � d im-

plies KEEP(U; c) � KEEP(U;d), (3) U � V implies

KEEP (V; c) � KEEP(U; c), and (4) c � KEEP(U; c).

Proof:

The proofs of these four properties are simple applica-

tions of the semantic de�nitions of NEW and KEEP.

For example, (1) requires that we prove e(ŝ; ŝ0) )

9ŝ1 : e(ŝ1; ŝ
0). To complete the proof we simply choose

ŝ1 = ŝ.

Next, we prove some properties of the invariant gener-

ation operators:

Lemma 2 (1) Pi(m) � Pi�1(m), (2) Xi(m) �

Xi+1(m), and (3) Ni+1(m) � Ni(m).

Proof: By induction on the number of passes i.

(i) P1(m) = KEEP (X1(m);N1(m)) ^ C1 � C1 =

P0(m). Using this result it is easy to show that

X1(m) � X2(m) and N2(m) � N1(m).

(ii) Assume the claim is true for i = k. Parts (2) and

(3) of the induction hypothesis and parts (2) and (3) of

Lemma 1 imply Pk+1 = KEEP(Xk+1(m);Nk+1(m)) �

KEEP (Xk+1(m); Nk(m)) � KEEP(Xk(m);Nk(m)) =

Pk(m). From Pk+1 � Pk, it follows immediately that

Xk+1(m) � Xk+2(m) and Nk+2(m) � Nk+1(m).

The next lemma says basically that if the mode does

not change when there is no � transition possible, then

KEEP (Xi; c) remains true:

Lemma 3 If we let m = ŝ(M ) = ŝ0(M),

�(ŝ; ŝ0) = ;, C2(ŝ; ŝ
0), Pi�1(m)(ŝ), Pi�1(m)(ŝ0), and

KEEP (Xi; c)(ŝ), then KEEP (Xi; c)(ŝ
0)

Proof: By contradiction.

Assume that :KEEP (Xi; c)(ŝ
0). Then there must be

some term t of KEEP (Xi; c) and some literal ` of t such

that `(ŝ) yet :`(ŝ0). We must have ` 2 Xi(m). By the

de�nition of Xi, @F(`) ^ Pi�1(m) ^ Pi�1(m)0 ^ C2 )

EX(m). Thus from the hypotheses and the assump-

tion we have EX(m)(ŝ; ŝ0). By the de�nition of EX we

have that there exists e and m0 with �A(m; e;m
0) and

e(ŝ; ŝ0). Finally this gives m0 2 �(ŝ; ŝ0) in contradiction

to a hypothesis.

In our setting, for each m the formula M = m )

Pi(m) is a mode invariant if and only if for all reach-

able states ŝ of �A, Pi(ŝ(M))(ŝ). It is su�cient for our

purposes to prove correctness of the generation algo-

rithm using an analog of the Basic Rule of Manna and

Pnueli [28]. We say that a mode invariant is a basic

mode invariant if it can be proved using this rule:

Basic Mode Invariance Rule: To show

M = m ) Pi(m) is a mode invari-

ant for all m it is su�cient to show (i)

8m : �A(m) ) Pi(m), and (ii) 8ŝ; ŝ0 :

Pi(ŝ(M))(ŝ) ^ �A(ŝ; ŝ
0)) Pi(ŝ

0(M ))(ŝ0)

Lemma 4 If M = m ) Pi�1(m) is a basic mode in-

variant for all m then M = m) Pi(m) is a basic mode

invariant for each m.

Proof: By the Basic Mode Invariance Rule.

(i) �A(m)) Ni(m) via the of the initial states case for

the de�nition of Ni(m). By Lemma 1 part (4) �A(m))

KEEP (Xi(m);Ni(m)). Finally using the axiom C1 and

the de�nition of Pi we have �A(m)) Pi(m).



(ii) Assume that Pi(m)(ŝ) and �A(ŝ; ŝ
0) where m =

ŝ(M ) and m0 = ŝ0(M). By Lemma 2 part (1)

Pi�1(m)(ŝ). The given basic mode invariance also

means that Pi�1(m
0)(ŝ0) holds. There are now two cases

to consider from the assumption about �A:

m0 2 �(ŝ; ŝ0) : In this case there exists e with

�A(m; e;m
0) and e(ŝ; ŝ0). Lemma 1 part (1) gives

NEW(Pi�1(m)^C2 ^ e)(ŝ
0) so Ni(m

0)(ŝ0), and by

Lemma 1 part (4) KEEP (Xi(m
0);Ni(m

0))(ŝ0).

m0 = m and �(ŝ; ŝ0) = ; : KEEP(Xi(m
0);Ni(m

0))(ŝ0)

follows from Lemma 3.

Finally, applying axiom C1 and the de�nition of Pi, we

have Pi(m
0)(ŝ0).

Theorem 2 M = m ) Pi(m) is a basic mode invari-

ant for �A for each m and each pass i. Furthermore,

(M = m ) Pi(m)) � (M = m ) Pi�1(m)), with at

least one invariant strengthened on each pass i before

the �xpoint is reached.

Proof:

The �rst part is an induction: (i) M = m ) P0(m) is

clearly a basic mode invariant. (ii) The induction step

follows immediately from Lemma 4. The second part

follows from Lemma 2 part (1).


